skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lin, Alex"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Here, we demonstrate a fundamentally new reactivity of the silyl enol ether functionality utilizing an in situ generated iodonitrene-like species. The present transformation inserts a nitrogen atom between the silyl enol ether olefinic carbons with the concomitant cleavage of the CC bond. Overall, this facile transformation converts a C-nucleophilic silyl enol ether to the corresponding C-electrophilic N-acyl-N,O-acetal. This unprecedented access to α-amido alkylating agents enables modular derivatization with carbon and heteroatom nucleophiles and the unique late-stage editing of carbon frameworks. The reaction efficiency of this transformation is well correlated with enol ether nucleophilicity as described by the Mayr N scale. Applications presented herein include late-stage nitrogen insertion into carbon skeletons of natural products with previously unattainable regioselectivity as well as modified conditions for 15N labeling of amides and lactams. 
    more » « less
  2. Sulfoximines are emerging moieties for medicinal and biological chemistry, due in part to their efficacy in selective inhibition of amide-forming enzymes such as γ-glutamylcysteine synthetase. While small-molecule sulfoximines such as methionine sulfoximine (MSO) and its derivatives are well studied, structures with methionine sulfoximine residues within complex polypeptides have been generally inaccessible. This paper describes a straightforward means of late-stage one-step oxidation of methionine residues within polypeptides to afford NH-sulfoximines. We also present chemoselective subsequent elaboration, most notably by copper( ii )-mediated N–H cross-coupling at methionine sulfoximine residues with arylboronic acid reagents. This development serves as a strategy to incorporate diverse sulfoximine structures within natural polypeptides, and also identifies the methionine sulfoximine residue as a new site for bioorthogonal, chemoselective bioconjugation. 
    more » « less